Τι είναι η Τριγωνομετρία;

H Τριγωνομετρία αναπτύχθηκε αρχικά για τις ανάγκες της Αστρονομίας και της Γεωγραφίας, αλλά χρησιμοποιήθηκε στη διάρκεια πολλών αιώνων και σε άλλους κλάδους των Μαθηματικών, στη Φυσική, στη Μηχανική και στη Χημεία.

Οι έννοιες του ημιτόνου, του συνημιτόνου και της εφαπτομένης μιας γωνίας προέκυψαν από τις παρατηρήσεις των Αστρονόμων της Αρχαιότητας.

Οι αρχαίοι Έλληνες πίστευαν ότι τα αστέρια βρίσκονταν πάνω σε μια τεράστια νοητή σφαίρα, στην οποία κινούνταν μόνο οι τότε γνωστοί πλανήτες: Ερμής, Αφροδίτη, Άρης, Δίας, Κρόνος, Σελήνη. Στην προσπάθειά τους να υπολογίσουν τις αποστάσεις μεταξύ των πλανητών –που είναι αδύνατον να μετρηθούν άμεσα– οι αρχαίοι Έλληνες προσπάθησαν να τις υπολογίσουν από τις γωνίες που σχημάτιζαν μεταξύ τους.

Αποτέλεσμα εικόνας για τριγωνομετρια αρχαιοτητα ιππαρχος

 Ίππαρχος ο Ρόδιος, ήταν Έλληνας αστρονόμος, γεωγράφος, χαρτογράφος και μαθηματικός. Θεωρείται ο ιδρυτής της τριγωνομετρίας και ο «πατέρας της Αστρονομίας»

Ο Αρίσταρχος ο Σάμιος, ο Πτολεμαίος, ο Ίππαρχος και άλλοι, που ασχολήθηκαν με την Αστρονομία, βρήκαν σχέσεις μεταξύ των πλευρών και των γωνιών τριγώνων.

Αρίσταρχος ο Σάμιος

Περίπου δύο χιλιάδες χρόνια πριν δημιουργήθηκαν τριγωνομετρικοί πίνακες, δηλαδή πίνακες με τους τριγωνομετρικούς αριθμούς (ημίτονα, συνημίτονα, εφαπτομένες) γωνιών. Ο υπολογισμός των τριγωνομετρικών αυτών αριθμών δεν ήταν καθόλου απλός. Άρχισε να απλοποιείται μετά τον 17ο αιώνα μ.Χ. και στις ημέρες μας είναι πανεύκολος με τη χρήση των υπολογιστών τσέπης. Σκοπός αυτών των πινάκων ήταν να διευκολυνθούν οι υπολογισμοί της Αστρονομίας.

Οι εφαρμογές της Αστρονομίας ήταν πολλές και εντυπωσιακές. Ένα απλό παράδειγμα είναι η ναυσιπλοΐα κατά τη διάρκεια της νύχτας. Οι αρχαίοι Έλληνες χρησιμοποιούσαν ένα ναυτικό όργανο, τον αστρολάβο, με τον οποίο μετρούσαν ουσιαστικά γωνίες και με τη χρήση της τριγωνομετρίας υπολόγιζαν αποστάσεις και χάραζαν την πορεία τους.

Ο αστρολάβος είναι ένα ιστορικό αστρονομικό όργανο το οποίο χρησιμοποιούσαν οι ναυτικοί και οι αστρονόμοι για την ναυσιπλοΐα και την παρατήρηση του Ήλιου και των αστεριών από τον 3ο αιώνα π.Χ. μέχρι τον 18ο αιώνα μ.Χ.

Ο αστρολάβος είναι ένα ιστορικό αστρονομικό όργανο το οποίο χρησιμοποιούσαν οι ναυτικοί και οι αστρονόμοι για την ναυσιπλοΐα και την παρατήρηση του Ήλιου και των αστεριών από τον 3ο αιώνα π.Χ. μέχρι τον 18ο αιώνα μ.Χ.

Οι αρχαίοι Έλληνες γνωρίζοντας ότι η Γη είναι σφαιρική χρησιμοποίησαν την Τριγωνομετρία στη Γεωγραφία. Ο Πτολεμαίος χρησιμοποίησε τριγωνομετρικούς πίνακες στο έργο του «Γεωγραφία», ενώ ο Κολόμβος είχε πάντα μαζί του στα ταξίδια του το έργο του Regiomontanus: «Ephemerides Astronomicae».

Αποτέλεσμα εικόνας για εφαρμογες τριγωνομετριας

Παρόλο που η Τριγωνομετρία εφαρμόστηκε αρχικά στη σφαίρα, έχει περισσότερες εφαρμογές στο επίπεδο. Η Τριγωνομετρία αποτελεί βασικό πεδίο γνώσης, καθώς συμβάλλει στην κατανόηση του χώρου και των ιδιοτήτων του. Οι εφαρμογές της Τριγωνομετρίας δεν περιορίζονται στη Γεωμετρία, αλλά επεκτείνονται στις βολές στη Φυσική, στην ανάκλαση στην Οπτική, στις αντοχές υλικών στη Στατική και σε άλλους κλάδους των Φυσικών ή ακόμα και των Κοινωνικών επιστημών.

Η ιστορία της Τριγωνομετρίας

Η ιστορία της Τριγωνομετρίας αρχίζει με τις πρώτες μαθηματικές καταγραφές στην Αίγυπτο και στη Βαβυλώνα. Οι Βαβυλώνιοι καθιέρωσαν τη μέτρηση των γωνιών σε μοίρες σε πρώτα λεπτά και σε δεύτερα. Οι Βαβυλώνιοι αστρονόμοι είχαν συγκεντρώσει έναν τεράστιο αριθμό δεδομένων από παρατηρήσεις και είναι σήμερα γνωστό ότι ένα μεγάλο μέρος πέρασε στους Έλληνες. Αυτά τα πρώτα βήματα στην Αστρονομία  οδήγησαν και στη γέννηση της Τριγωνομετρίας.

Αποτέλεσμα εικόνας για τριγωνομετρια αρχαιοι

Η Χορδή των Ελλήνων

Μέχρι όμως την εποχή των Ελλήνων  καμία καθαρά τριγωνομετρική έννοια δεν είχε κάνει  την εμφάνισή της. Και αυτό καθυστέρησε να γίνει και έγινε εξ αρχής σε σύνδεση με την Αστρονομία.

Τον δεύτερο αιώνα πριν από τον Χριστό ο αστρονόμος Ίππαρχος συνέταξε ένα τριγωνομετρικό πίνακα για την επίλυση τριγώνων. Στον πίνακα αυτόν σε κάθε γωνία απέδιδε μία τιμή που ήταν « το μήκος της χορδής» η οποία  αντιστοιχούσε στη γωνία όταν την έκανε επίκεντρη με σταθερή ακτίνα r.

 Χρειάζεται εδώ να τονίσουμε ότι κανένα έργο του Ίππαρχου δεν έχει διασωθεί και οι γνώσεις μας για το έργο του προέρχονται από μεταγενέστερους συγγραφείς όπως ο Θέων από την Αλεξάνδρεια ο σχολιαστής του 4ου αιώνα.

Δεν γνωρίζουμε ποια ήταν η σταθερή τιμή που έδινε ο  Ίππαρχος στην ακτίνα, αλλά 300 χρόνια αργότερα ο Πτολεμαίος στην Αλμαγέστη χρησιμοποίησε για την ακτίνα του κύκλου την τιμή r= 60 και συνέταξε έναν παρόμοιο πίνακα με Χορδές, μία τιμή χορδής για κάθε γωνία από 1 μοίρα μέχρι τις 1800 .  Στο ίδιο εγχειρίδιο παρουσίασε και το λεγόμενο θεώρημα του Μενελάου για την επίλυση σφαιρικών τριγώνων. Στους αιώνες που ακολούθησαν η τριγωνομετρία του Πτολεμαίου ήταν η πρωταρχική εισαγωγή για όποιον ήθελε να μυηθεί στην αστρονομία.

Η εξαφάνιση τόσων και τόσων εργασιών των Ελλήνων πάνω στην αστρονομία και την τριγωνομετρία οφείλεται και στο γεγονός ότι η Αλμαγέστη του Πτολεμαίου επεσκίασε όλες τις παλαιότερες εργασίες καθιστώντας τες περιττές

Το Ημίτονο των Ινδών

Την ίδια περίπου εποχή με τον Πτολεμαίο οι Ινδοί αστρονόμοι είχαν αναπτύξει την σύνταξη τριγωνομετρικών πινάκων ένα τριγωνομετρικό σύστημα βασιζόμενο όχι στο μήκος της χορδής αλλά στη συνάρτηση του Ημιτόνου.

Το ημίτονο των Ινδών δεν ήταν  βέβαια καθαρός αριθμός, όπως είναι σήμερα, αλλά το μήκος της κάθετης πλευράς ενός ορθογωνίου τριγώνου με σταθερή υποτείνουσα. Και δεν είχαν αποδεχθεί μία ορισμένη τιμή για το μήκος της υποτείνουσας.   

Στο μεταξύ οι Κινέζοι αστρονόμοι του Μεσαίωνα μελετώντας αστρονομία προσέγγισαν τις τριγωνομετρικές έννοιες και εισήγαγαν την τριγωνομετρική εφαπτομένη. Το ενδιαφέρον τους όμως περιορίστηκε σε αστρονομικές εφαρμογές

Τριγωνομετρία των Αράβων

Τον 8ο αιώνα οι Άραβες αστρονόμοι κληρονόμησαν τόσο την ελληνική όσο την ινδική παράδοση.

Σχετική εικόνα

Τα έργα τόσο των Ινδών όσο και των Ελλήνων μεταφράστηκαν και διαβάστηκαν από τους μουσουλμάνους μαθηματικούς οι οποίοι χρησιμοποίησαν το ινδικό ημίτονο παράλληλα με την ελληνική χορδή. Ο Muhammad ibn Jabir al-Battani. εισήγαγε και το συνημίτονο. Αργότερα επανεισήγαγαν την εφαπτομένη των Κινέζων, ενώ  πρότειναν και τη συνεφαπτομένη.

Στο τέλος του 10ου αιώνα χρησιμοποιούσαν πλέον όλες τις τριγωνομετρικές έννοιες, ενώ είχαν ανακαλύψει αλλά και αποδείξει βασικά θεωρήματα της τριγωνομετρίας τόσο για τα επίπεδα όσο και για τα σφαιρικά τρίγωνα. Στο μεταξύ διάφοροι μαθηματικοί πρότειναν για την ακτίνα r του κύκλου την τιμή r = 1 αντί για την r = 60. Όλες αυτές οι ανακαλύψεις είχαν πυροδοτηθεί και από την ανάγκη για την ανάπτυξη της αστρονομίας αλλά και από την ανάγκη προσανατολισμού σε κάθε τόπο και τον προσδιορισμό του «προς τα που» βρίσκεται η Μέκκα προς την κατεύθυνση της οποίας έπρεπε να κοιτάζει ο πέντε φορές την ημέρα  προσευχόμενος μουσουλμάνος. Οι Άραβες ερευνητές συνέταξαν πίνακες εκπληκτικής ακρίβειας με τις τιμές του ημίτονου και της εφαπτομένης για γωνίες ανά  ένα πρώτο λεπτό της μοίρας. Τελικά ο μεγάλος αστρονόμος Nasir ad-Din at- Tusi έγραψε το βιβλίο των το οποίο ήταν το πρώτο δοκίμιο που «είδε» την  επίπεδη και τη σφαιρική τριγωνομετρία ως ανεξάρτητα μαθηματικά αντικείμενα.   

Οι Ευρωπαίοι: Γεωγραφία και Αστρονομία

Οι Λατίνοι της δυτικής Ευρώπης γνώρισαν τη μουσουλμανική τριγωνομετρία μέσα από τις μεταφράσεις των αραβικών  αστρονομικών εγχειριδίων, τον 12ο αιώνα. 

Ο  Richard of Wallingford ήταν ο πρώτος που συσχέτισε το Ινδικό Ημίτονο με την Ελληνική Χορδή και χρησιμοποίησε τα Στοιχεία του Ευκλείδη για την απόδειξη θεωρημάτων τριγωνομετρικών.

Αποτέλεσμα εικόνας για Στοιχεία του Ευκλείδη

Τον 16ο αιώνα η τριγωνομετρία ενσωματώθηκε στη Γεωγραφία ενώ ήταν ήδη εργαλείο της Αστρονομίας. Η γνώση τριγωνομετρίας ήταν αναγκαία για τον προσδιορισμό της θέσης πάνω στη Γη σε συνδυασμό με τις έννοιες γεωγραφικό πλάτος και γεωγραφικό μήκος

Το πρώτο σημαντικό ευρωπαϊκό έργο γράφτηκε από τον γερμανό αστρονόμο  Regiomontanus ο οποίος στα μέσα του 14ου αιώνα. μελέτησε την επίπεδη τριγωνομετρία και απέδειξε το θεώρημα των ημίτονων.

Τον επόμενο αιώνα ο επίσης γερμανός αστρονόμος Rheticus εισήγαγε τη σύγχρονη προσέγγιση των τριγωνομετρικών αριθμών. Μετά από αυτόν κάθε τριγωνομετρική ποσότητα – ημίτονο, συνημίτονο – δεν ήταν πλέον κάποιο μήκος αλλά ένας  ΛΟΓΟΣ δύο μηκών, σε κάθε δηλαδή γωνία αντιστοιχούσε ένας αριθμός .

Κατά τα τέλη του 16ου αιώνα ο Γάλλος François Viète εμπλούτισε τη σφαιρική τριγωνομετρία, ενώ ο σύγχρονός του  σκωτσέζος John Napier, ο οποίος ανακάλυψε και τους λογαρίθμους, στην αυγή του 17ου αιώνα πρότεινε δέκα μνημονικούς κανόνες για την επίλυση σφαιρικών τριγώνων.

Στην αγκαλιά της ευρωπαϊκής Ανάλυσης

Πενήντα περίπου χρόνια μετά τη δημοσίευση  των λογαριθμικών πινάκων από τον Napier ο Newton ανακάλυψε τον Λογισμό (Calculus) παρουσίασε πολλές συναρτήσεις του x ως Σειρές δυνάμεων του x με άπειρους όρους . Ανάμεσα σε αυτές παρουσίασε και τις συναρτήσεις του ημιτόνου sin(x) του συνημιτόνου cos(x) και της εφαπτομένης tan(x) ως Σειρές.

Με την ανακάλυψη του Λογισμού  (Calculus), τη μελέτη των τριγωνομετρικών συναρτήσεων ανέλαβε η ΑΝΑΛΥΣΗ και οι τριγωνομετρικές συναρτήσεις ξέφυγαν οριστικά από την κηδεμονία της Αστρονομίας και της Γεωγραφίας  και άρχισαν να παίζουν έναν απρόβλεπτα σημαντικό ρόλο τόσο για τα καθαρά όσο και για τα εφαρμοσμένα μαθηματικά.

Αποτέλεσμα εικόνας για Leonhard Euler cosx

Τον 18ο αιώνα με την ευθύνη του Leonhard Euler έγινε η καθόλου προκαθορισμένη συνάντηση των τριγωνομετρικών συναρτήσεων με την εκθετική συνάρτηση και με τους μιγαδικούς αριθμούς ενώ και η εκθετική συνάρτηση περίμενε στη γωνία.

Ένα σχόλιο σχετικά με το “Τι είναι η Τριγωνομετρία;”

Αφήστε μια απάντηση

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *